2025-12-05 14:29:58

1. Description

This report analyzes the performance of matrix-vector multiplication for different matrix sizes (N) and levels of task parallelism. We compare fill and compute phases and evaluate how execution time and speedup evolve with increasing workloads.

1.1. Session

  • Hostname: feelpp1

  • User: feelpp1

  • Time Start: 20251205T143002+0100

  • Time End: 20251205T143015+0100

1.2. Cases

  • Total: 12

  • Failures: 0

  • Runs: 1

2. Parametrization

Hash tasks elements Total Time (s)

pass

73dec7f2

1.0

1000.0

0.8033056259155273

Logs

pass

73dec7f2

1.0

1000.0

0.8033056259155273

Logs

pass

ecd9fbe1

1.0

2000.0

0.9616482257843018

Logs

pass

ecd9fbe1

1.0

2000.0

0.9616482257843018

Logs

pass

97cff20f

1.0

3000.0

1.212583065032959

Logs

pass

97cff20f

1.0

3000.0

1.212583065032959

Logs

pass

79cb2fd1

1.0

4000.0

1.5120949745178223

Logs

pass

79cb2fd1

1.0

4000.0

1.5120949745178223

Logs

pass

64b44271

2.0

1000.0

0.7444722652435303

Logs

pass

64b44271

2.0

1000.0

0.7444722652435303

Logs

pass

48e3c028

2.0

2000.0

0.9612433910369873

Logs

pass

48e3c028

2.0

2000.0

0.9612433910369873

Logs

pass

03f7318f

2.0

3000.0

1.2199804782867432

Logs

pass

03f7318f

2.0

3000.0

1.2199804782867432

Logs

pass

9341436b

2.0

4000.0

1.5131113529205322

Logs

pass

9341436b

2.0

4000.0

1.5131113529205322

Logs

pass

1fe7b1b0

4.0

1000.0

0.7454335689544678

Logs

pass

1fe7b1b0

4.0

1000.0

0.7454335689544678

Logs

pass

b58ae281

4.0

2000.0

0.9570603370666504

Logs

pass

b58ae281

4.0

2000.0

0.9570603370666504

Logs

pass

0fe61403

4.0

3000.0

0.9597663879394531

Logs

pass

0fe61403

4.0

3000.0

0.9597663879394531

Logs

pass

a6450245

4.0

4000.0

1.2114019393920898

Logs

pass

a6450245

4.0

4000.0

1.2114019393920898

Logs

3. Performance Analysis

3.1. Execution Time vs Number of Tasks

This plot shows the execution time breakdown (fill and compute stages) as the number of tasks increases. It highlights parallel scaling behavior for different matrix sizes.

3.2. Execution Time vs Problem Size (N)

This plot illustrates how execution time scales with matrix size N under different task counts. It helps identify compute bottlenecks and memory throughput constraints.

3.3. Speedup Analysis

This speedup plot shows how effectively the computation accelerates when increasing task parallelism. It highlights differences between fill and compute phases and reveals scaling limits for larger matrix sizes.