2. Hands-on (Session 1)

1. Exercice 1: Benchmarking a simple application locally

1.1. Pre-requisites

For this exercise, we will use GitHub codespaces to benchmark a simple application using feelpp.benchmarking.

1.1.1. GitHub Codespaces

  1. First, log in to your GitHub account and navigate to your assignment repository.

  2. On the top-left branches button, select the feedback branch. (This is because we do not want the Docker configuration from the CI/CD course to interfere with this exercice).

  3. Click again on that button, and write benchmarking. Now click on create branch benchmarking from the feedback branch.

  4. In this branch, go to the Code button and create a new codespace for the benchmarking branch.

  5. Inside the codespace, DELETE the .devcontainer folder to use the default image. If you want, you can actually delete everything in the repository and start from scratch.

  6. Rebuild the codespace.

1.1.2. Install feelpp.benchmarking

feelpp.benchmarking is available on PyPI and can be installed using pip:

pip install feelpp-benchmarking

1.1.3. Create a .gitignore file

The next steps will create a large number of files and directories that are not necessary to be tracked by Git. To avoid cluttering the repository, create a .gitignore file in the root of your project, or update the existing one.

touch .gitignore

And add the following content:

node_modules/
package-lock.json
public/
cache/
reframe/
reports/
outputs/

1.1.4. Initialize antora environment

In order to generate the benchmark reports website, the Antora environment must be configured beforehand.

Initialize the Antora environment in the current directory. There is a built-in script that automates this process:

feelpp-antora init -d . -t "My Benchmarks" -n my_benchmarks

1.1.5. Verify the setup

You should see the following files and directories created on the root of your project:

  • site.yml: The antora playbook file.

  • docs/: The directory where the dashboard Asciidoc pages are stored.

  • package.json: The nodejs package file, containing necessary dependencies for feelpp.benchmarking.

  • package-lock.json: The lock file for the nodejs package.

  • node_modules/: The directory where the nodejs dependencies are stored.

To see if our dashboard is correctly configured, compile the Asciidoc files to HTML and start a web server:

npm run antora
npm run start

Finally, click on the link on the terminal to open the dashboard in your browser. If everything OK, you should see a page with the title My Benchmarks.

Close the server by pressing Ctrl+C on the terminal.

1.2. Copy the system configuration file

To benchmark applications on a machine, a ReFrame configuration file must be provided to feelpp.benchmarking. This file describes the system’s architecture, as well as the necessary modules, partitions, commands, and environments for your applications to run as expected.

Create a new Python file named codespace_machine.py in the root of your project

touch codespace_machine.py

and copy the following content to the file:

site_configuration = {
    'systems': [
        {
            'name': 'codespace_machine',
            'descr': 'GitHub Codespace Machine',
            'hostnames':['py::socket.gethostname'],
            'partitions': [
                {
                    'name': 'my_partition',
                    'scheduler': 'local',
                    'launcher': 'local',
                    'environs': ['my_environment'],
                    'processor': { 'num_cpus': 1 }
                }
            ]
        }
    ],
    'environments':[
        {
            'name': 'my_environment',
            'target_systems': ["codespace_machine:my_partition"]
        }
    ]
}

1.3. Create a Machine Specification File

Create a new JSON file names codespace_specs.json in the root of your project

touch codespace_specs.json

and copy the following template:

{
    "machine": "<TODO>",
    "targets":["<TODO>:builtin:<TODO>"],
    "reframe_base_dir":"<TODO>",
    "reports_base_dir":"<TODO>",
    //HELP: The input_dataset_base_dir can be used to indicate where benchmarked application can be found.
    "input_dataset_base_dir":"<TODO>",
    "output_app_dir":"<TODO>"
}
Exercise: Machine Specification File

Complete the <TODO> fields in the JSON file, using information from the codespace_machine.py file.

  • The targets field follows the format <partition>:<platform>:<environment>.

  • The framework does not support relative paths, but it supports using environment variables. Use $PWD to refer to the current working directory.

  • The example applications can be found under the examples directory.

Solution
{
    "machine": "codespace_machine",
    "targets":["my_partition:builtin:my_environment"],
    "reframe_base_dir":"$PWD/reframe",
    "reports_base_dir":"$PWD/reports",
    "input_dataset_base_dir":"$PWD/examples",
    "output_app_dir":"$PWD/outputs"
}

1.4. Example application

For this exercise, we will use a simple Python application that calculates the n’th Fibonacci number, in two different ways: recursively and iteratively.

It takes the following arguments:

  • -n: the sequence number to calculate

  • -a: the approach to use. Options are recursive and iterative

  • -o: the output file to write the elapsed time. It will be saved in CSV format (elapsed,fibonacci_number)

Create a new folder named examples/ and a Python file named fibonacci.py inside the examples folder.

mkdir examples
touch examples/fibonacci.py

and copy the following content to the file:

from argparse import ArgumentParser
import os
from time import perf_counter

def fibonacciRecursive(n):
    if n < 1: return 0
    elif n <= 2: return 1
    else: return fibonacciRecursive(n-1) + fibonacciRecursive(n-2)

def fibonacciIterative(n):
    if n < 1: return 0
    elif n <= 2: return 1
    else:
        a,b = 1,1
        for i in range(3,n+1):
            a,b = b,a+b
        return b


if __name__=="__main__":
    parser = ArgumentParser()
    parser.add_argument('-n',type=int,help="Sequence number",required=True)
    parser.add_argument('--approach','-a',type=str, help="Fibonacci algorithm approach to use",required=True)
    parser.add_argument('--out','-o',type=str, help="Filepath where to save elapsed times",required=True)
    args = parser.parse_args()

    n = int(args.n)

    if args.approach == "recursive":
        fib = fibonacciRecursive
    elif args.approach == "iterative":
        fib = fibonacciIterative
    else:
        raise NotImplementedError(f"Fibonacci approach - {args.approach} - not implemented")


    tic = perf_counter()
    fib_number = fib(n)
    toc = perf_counter()
    elapsed_time = toc - tic


    dirpath = os.path.dirname(args.out)
    if not os.path.exists(dirpath):
        os.makedirs(dirpath)

    with open(args.out,'w') as f:
        f.write(f"elapsed,fibonacci_number\n{elapsed_time},{fib_number}")

    print(f"Elapsed time: {elapsed_time}")
    print(f"Fibonacci number: {fib_number}")
    print("Done!")

1.5. Create a Benchmark Specification File

Once how the application that will benchmarked works is understood, a benchmark specification file must be created to describe how the application will be tested.

Create a new JSON file named fibonacci_benchmark.json in the root of your project

touch fibonacci_benchmark.json

and copy the following template:

{
    "use_case_name":"Fibonacci",
    "timeout":"0-0:5:0",
    "executable": "python <TODO>/fibonacci.py",
    "output_dir":"<TODO>",
    "options":[
        "-n <TODO>",
        "-a <TODO>",
        "-o <TODO>/output.json"
    ],
    "scalability": {
        "directory":"<TODO>",
        "stages":[
            {
                "name":"",
                "filepath":"output.json",
                "format":"csv",
                "units":{ "fibonacci_number":"" }
            }
        ]
    },
    "sanity":{ "success":["<TODO>"] },

    "resources": {"tasks":1, "exclusive_access":false },
    "parameters": [
        {
            "name":"n",
            //Equivalent to: "sequence":[10,15,20,25,30,35,40]
            "range":{"min":10,"max":40,"step":5}
        },
        {
            "name":"method",
            "sequence":["recursive","iterative"]
        }
    ]
}
Exercise: Benchmark Specification File

Complete the <TODO> fields in the JSON file, using information from the Fibonacci application and the machine specification file.

  • Remember to use the {{placeholder}} syntax

  • To access fields from the machine specification file, use the {{machine.field}} syntax.

  • To access parameter values, use the {{parameters.parameter_name.value}} syntax.

  • The {{instance}} keyword serves as a unique identifier. It can be used to create a unique directory for each test instance, for executing tests asynchronously.

Solution
{
    "use_case_name":"Fibonacci",
    "timeout":"0-0:5:0",
    "executable": "python {{machine.input_dataset_base_dir}}/fibonacci.py",
    "output_dir":"{{machine.output_app_dir}}/fibo",
    "options":[
        "-n {{parameters.n.value}}",
        "-a {{parameters.method.value}}",
        "-o {{output_dir}}/output.json"
    ],
    "scalability": {
        "directory":"{{output_dir}}",
        "stages":[
            {
                "name":"",
                "filepath":"output.json",
                "format":"csv",
                "units":{ "fibonacci_number":"" }
            }
        ]
    },
    "sanity":{ "success":["Done!"] },

    "resources": {"tasks":1, "exclusive_access":false },
    "parameters": [
        {
            "name":"n",
            "range":{"min":10,"max":40,"step":5}
        },
        {
            "name":"method",
            "sequence":["recursive","iterative"]
        }
    ]
}

1.6. Create a Figure Description File

To immediately be able to visualize the results of the benchmark, a figure description file must be created.

Create a new JSON file named fibonacci_plot.json in the root of your project

touch fibonacci_plot.json

and copy the following template:

{
    "plots":[
        {
            "title":"Time Complexity",
            "plot_types":["scatter"],
            "transformation":"performance",
            "variables": ["elapsed"],
            "xaxis":{ "parameter":"<TODO>", "label":"<TODO>" },
            "yaxis": {"label":"Execution time (s)"},
            "color_axis":{"parameter":"<TODO>","label":"<TODO>"}
        }
    ]
}
Exercise: Figure Description File

Complete the <TODO> fields in the JSON file to be able to recreate the following figure:

fibonacci time complexity plot
Solution
{
    "plots":[
        {
            "title":"Time Complexity",
            "plot_types":["scatter"],
            "transformation":"performance",
            "variables": ["elapsed"],
            "xaxis":{ "parameter":"n", "label":"N" },
            "yaxis": {"label":"Execution time (s)"},
            "color_axis":{"parameter":"method","label":"Method"}
        }
    ]
}

1.7. Run the benchmark and visualize the results

To launch the benchmarks, use the following command:

feelpp-benchmarking-exec --machine-config codespace_specs.json \
                            --custom-rfm-config codespace_machine.py \
                            --benchmark-config fibonacci_benchmark.json \
                            --plots-config fibonacci_plot.json \
                            --website
The --website flag will generate the dashboard files and start a web server to visualize the results.

2. Benchmarking a parallel application on Karolina

Before you start this hands-on exercise, you need to follow the steps below to set up your environment in Karolina.

2.1. Pre-requisites

This exercise takes place on the Karolina cluster. Start by logging in to Karolina.

Then, create a new directory for the hands-on exercise and navigate to it:

mkdir benchmarking
cd benchmarking

If you are on VSCode, you can open it in the current directory by typing code . -r on the terminal.

2.1.1. Create a python environment

It is useful to create a dedicated Python environment for the hands-on exercises. This way, you can avoid conflicts with other Python projects you may have on your system.

Karolina’s system default Python version is too old…​ More recent versions are available as modules. For this session, we are going to use Pyton3.10.4. Load it with:

module load Python/3.12.3-GCCcore-13.3.0

Now if you type python --version, you should see Python 3.12.3.

Then, create a new Python environment using venv and activate it:

python -m venv .venv
source .venv/bin/activate

Update pip:

pip install --upgrade pip

2.1.2. Install feelpp.benchmarking

feelpp.benchmarking is available on PyPI and can be installed using pip:

pip install feelpp-benchmarking

2.1.3. Initialize antora environment

In order to generate the benchmark reports website, the Antora environment must be configured beforehand.

First, we need Node.js, so start by loading the nodejs module:

module load nodejs/18.12.1-GCCcore-12.2.0

Then, initialize the Antora environment in the current directory. There is a built-in script that automates this process:

feelpp-antora init -d . -t "My Benchmarks" -n my_benchmarks

This script initializes a Git repository, creates the necessary files and directories, and installs the required dependencies.

Because antora requires an initialized Git repository, make sure you are authenticated with your Git account.

git config user.name "<YOUR_NAME>"
git config user.email "<YOUR_EMAIL>"

And create an empty commit:

git commit --allow-empty -m "Initial commit"

2.1.4. Verify the setup

You should see the following files and directories created on the root of your project:

  • .venv/: The directory where the Python environment is stored.

  • site.yml: The antora playbook file.

  • docs/: The directory where the dashboard Asciidoc pages are stored.

  • package.json: The nodejs package file, containing necessary dependencies for feelpp.benchmarking.

  • package-lock.json: The lock file for the nodejs package.

  • node_modules/: The directory where the nodejs dependencies are stored.

To see if our dashboard is correctly configured, compile the Asciidoc files to HTML and start a web server:

npm run antora
npm run start

Finally, click on the link on the terminal to open the dashboard in your browser. You might need to forward the port to your local machine to access the dashboard. If everything OK, you should see a page with the title My Benchmarks.

Close the server by pressing Ctrl+C on the terminal.

2.2. Create a Machine Specification File

Fortunately, the feelpp.benchmarking package already contains the general ReFrame configuration for the Karolina cluster. However, we need to create a machine specification file to specify user-dependent configurations.

Create a new file named karolina.json at the root of your project

touch karolina.json

Edit the file and add the following content:

{
    "machine": "karolina",
    "targets":["qcpu:builtin:default"],
    "execution_policy": "async",
    "reframe_base_dir":"$PWD/reframe",
    "reports_base_dir":"$PWD/reports/",
    "input_dataset_base_dir":"$PWD/examples",
    "output_app_dir":"$PWD/outputs",
    "access":[
        "--account=dd-24-88",
        "--reservation=dd-24-88_2025-03-25T14:30:00_2025-03-25T17:00:00_40_qcpu"
    ]
}

In this case, we will use and export data from within the current directory. But there are some cases where it is useful to use different disks for benchmarking an application (e.g. large capacity vs high performance disks).

2.3. Example application

For this exercice, we will use a MPI application that computes a matrix vector multiplication in parallel. The matrix and vector are initialized randomly for a given size.

It takes the following positional arguments:

  • (int) The matrix size.

  • (string) The output directory to write the scalability.json file containing elapsed times.

Create a new folder named examples/ and a C++ file named matrixvector.cpp inside the examples folder.

mkdir examples
touch examples/matrixvector.cpp

Copy the following code to the matrixvector.cpp file:

#include <mpi.h>
#include <iostream>
#include <random>
#include <fstream>
#include <vector>
#include <numeric>
#include <string>
#include <filesystem>

namespace fs = std::filesystem;

void fill_matrix_vector(std::vector<double>& matrix, std::vector<double>& vector) {
    std::mt19937 gen(42);
    std::uniform_real_distribution<double> dist(0.0, 1.0);
    for (double& x : matrix) x = dist(gen);
    for (double& x : vector) x = dist(gen);
}

int main(int argc, char** argv)
{
    MPI_Init(&argc, &argv);

    int rank, size;
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);

    if ( argc < 3 )
    {
        if (rank == 0)
            std::cerr << "Usage: " << argv[0] << " <N> <output_directory>\n";
        MPI_Finalize();
        return 1;
    }

    int N = std::stoi(argv[1]);
    fs::path output_dir = argv[2];

    int rows_per_proc = N / size;
    std::vector<double> vector(N);
    std::vector<double> local_matrix(rows_per_proc * N);
    std::vector<double> matrix(rank == 0 ? N * N : 0);
    std::vector<double> result(rank == 0 ? N : 0);

    double start_fill_time = MPI_Wtime();

    if (rank == 0) fill_matrix_vector(matrix, vector);

    MPI_Scatter(matrix.data(), rows_per_proc * N, MPI_DOUBLE, local_matrix.data(), rows_per_proc * N, MPI_DOUBLE, 0, MPI_COMM_WORLD);

    MPI_Bcast(vector.data(), N, MPI_DOUBLE, 0, MPI_COMM_WORLD);
    double end_fill_time = MPI_Wtime();

    double start_time = MPI_Wtime();

    for (int avg_i = 0; avg_i < 10; avg_i++)
    {
        std::vector<double> local_result(rows_per_proc, 0);
        for (int i = 0; i < rows_per_proc; ++i)
            for (int j = 0; j < N; ++j)
                local_result[i] += local_matrix[i * N + j] * vector[j];

        MPI_Gather(local_result.data(), rows_per_proc, MPI_DOUBLE, result.data(), rows_per_proc, MPI_DOUBLE, 0, MPI_COMM_WORLD);
    }
    double end_time = MPI_Wtime();
    double compute_elapsed = (end_time - start_time)/10;

    if (rank == 0){
        std::cout << "Fill time: " << (end_fill_time - start_fill_time) << " s\n";
        std::cout << "Compute time: " << compute_elapsed << " s\n";

        fs::path filename = "scalability.json";

        if (!fs::exists(output_dir))
            fs::create_directories(output_dir);

        std::ofstream scal_outfile(output_dir/filename);
        if ( scal_outfile.is_open() )
        {
            scal_outfile << "{\n";
            scal_outfile << "  \"elapsed_fill\": " << (end_fill_time - start_fill_time) << ",\n";
            scal_outfile << "  \"elapsed_compute\": " << compute_elapsed << "\n";
            scal_outfile << "}\n";
            scal_outfile.close();
        }
        else
            std::cerr << "[OOPSIE] Error opening file for writing." << std::endl;

    }

    MPI_Finalize();

    return 0;
}

We now need to compile the application. To do so (quickly), we will use the mpicxx compiler.

First, we need to load OpenMPI:

module load OpenMPI/4.1.4-GCC-12.2.0

Then, compile the application:

mpicxx examples/matrixvector.cpp -o examp
les/matrixvector

2.4. Create a Benchmark Specification File

It is now time to describe the benchmark.

Create the file matrixvector_benchmark.json in the root of your project

touch matrixvector_benchmark.json

Copy the following template

{
    "executable": "{{machine.input_dataset_base_dir}}/matrixvector",
    "use_case_name": "Multiplication",
    "timeout":"0-0:10:0",
    "output_directory": "{{machine.output_app_dir}}/matrixvector",
    "options": [
        "{{parameters.elements.value}}",
        "{{output_directory}}/{{instance}}"
    ],
    "scalability": {
        "directory": "{{output_directory}}/{{instance}}/",
        "stages": [
            {
                "name":"",
                "filepath": "scalability.json",
                "format": "json",
                "variables_path":"*"
            }
        ]
    },
    "sanity": { "success": [], "error": ["[OOPSIE]"] },
    "resources":{ "tasks":"<TODO>", "exclusive_access":false },
    "parameters": [
        {
            "name": "<TODO>",
            "<TODO>": <TODO>
        },
        {
            "name":"elements",
            "linspace":{ "min":10000, "max":40000, "n_steps":4 }
        }
    ]
}
Exercise: Benchmark Specification File

Complete the <TODO> fields in the JSON file in order to benchmark the Matrix-Vector multiplication using 1, 2, 4, 8, 16, 32, 64 and 128 tasks.

  • Multiple parameter generators are available, some examples are:

  • "linspace":{"min": 1, "max":2, "n_steps":10}

  • "sequence":[1,2,3],

  • "geometric":{"start":1,"ratio":2, "n_steps":10}

  • "range":{"min":1,"max":10,"step":1}

Solution
{
    "resources":{ "tasks":"{{parameters.tasks.value}}", "exclusive_access":false },
    "parameters": [
        {
            //Any name would work
            "name": "tasks",
            "sequence": [1,2,4,8,16,32,64,128]
            //"geometric": {"start":1, "ratio":2, "n_steps":8}
        },
        {
            "name":"elements",
            "linspace":{ "min":10000, "max":40000, "n_steps":4 }
        }
    ]
}

2.5. Create a Figure Description File

Create the file matrixvector_plots.json in the root of your project

touch matrixvector_plots.json

And copy the following file to configure a speedup plot.

{
    "plots":[
        {
            "title": "Speedup",
            "plot_types": [ "scatter" ],
            "transformation": "speedup",
            "variables": [ "elapsed_fill","elapsed_compute" ],
            "names": ["Fill","Compute"],
            "xaxis": { "parameter": "tasks", "label": "Number of tasks" },
            "yaxis": { "label": "Speedup" },
            "secondary_axis":{ "parameter":"elements", "label":"N" }
        }
    ]
}

2.6. Run the benchmark and visualize the results

To launch the benchmarks, use the following command:

feelpp-benchmarking-exec --machine-config karolina.json \
                            --benchmark-config matrixvector_benchmark.json \
                            --plots-config matrixvector_plots.json \
                            --website